ORIGINAL ARTICLE

Inhibition of Csn3 expression induces growth arrest and apoptosis of hepatocellular carcinoma cells

Yong-sheng Yu·Zheng-hao Tang·Qing-chun Pan·Xiao-hua Chen·Xue-ni Liu·Guo-qing Zang

Received: 18 October 2011 / Accepted: 15 December 2011 / Published online: 12 January 2012 © Springer-Verlag 2012

Abstract

Purpose Csn3 (or CSN3) encodes the third subunit of an eight-subunit complex, the COP9 signalosome (CSN), which acts as a protein kinase and a deneddylase in mammalian cells. Previous studies have shown that Csn3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast and associated with the tumorigenesis process in osteosarcoma. However, its correlation with hepatocellular carcinoma (HCC) has not been explored yet. *Methods* The expression of Csn3 in HCC (n = 30), cirrhosis (n = 30), and normal tissues (n = 30) was detected using immunohistochemical analysis. The impacts of lentivirusmediated inhibition of Csn3 on HCC cells were detected using MTT, BrdU incorporation assay, and flow cytometric analysis. In addition, the colony formation and tumor growth ability in nude mice were detected to define the role of Csn3 in tumorigenesis.

Results Knockdown of Csn3 expression in HCC cell lines (SMMC-7721 and Hep3B) significantly inhibits the tumor growth both in vitro and in vivo. Further investigation indicates that this growth inhibition effect may be mediated through cell cycle arrest in G0/G1 phase and inductions of pro-apoptotic proteins BIK and Caspase-8. In addition, knockdown of Csn3 expression evidently suppresses tumor growth in a xenograft nude mice model.

Conclusion Collectively, this study demonstrates Csn3 as an oncogene that regulates the tumorigenesis process in HCC cells.

Y. Yu · Z. Tang · Q. Pan · X. Chen · X. Liu · G. Zang (\bowtie) Department of Infectious Diseases, Sixth People's Hospital, Shanghai Jiaotong University, Yishan Road 600, Shanghai 200233, China e-mail: guoqingzang@126.com

Keywords Csn3 · Hepatocellular carcinoma · Tumor growth · Apoptosis

Introduction

Hepatocellular carcinoma (HCC) represents the sixth most common malignancy and the third most common cause of cancer related death worldwide [1]. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis [2]. Surgical resection (HR), local ablation therapies, and liver transplantation (LT) are regarded as potentially curative treatment modalities depending on the size and number of tumors [3]. However, surgical prognosis for many patients with HCC is not favorable due to a highly likelihood of intrahepatic and remote recurrences [3]. Targeted therapy has shown a promising future in treating HCC patients [4]. Nevertheless, because of the high heterogeneity of HCC patients, one targeting strategy may be only effective to certain subgroup of HCC patients. Therefore, to identify novel targets that regulate the tumorigenesis process of HCC will be a way to fulfill the goal of the individualized therapy against HCC.

Csn3 (or CSN3) encodes the third subunit of an eight-subunit complex, the COP9 signalosome (CSN) that was first identified in *Arabidopsis thaliana* in 1996 as a negative regulator of constitutive photomorphogenesis (COP) [5, 6]. The CSN is conserved between plants and mammals and is related to the 26S proteasome regulatory complex [7]. Two activities associated with the CSN have been identified so far: a protein kinase and a deneddylase. The CSN-associated kinase phosphorylates transcription factors, which determines their stability toward the ubiquitin system. The associated deneddylase regulates the activity of specific SCF (Skp1, Cullins, F-box proteins) E3 ubiquitin ligases. The CSN thus appears to be a platform connecting signaling with proteolysis, which regulates the stability of many signaling proteins, including c-Jun, p53, ICSBP, and p27 [8].

Human Csn3 maps to the Smith-Magenis syndrome common deletion interval. Smith-Magenis syndrome, associated with del (17) (p11.2p11.2), is a multiple congenital anomaly/ mental retardation syndrome associated with developmental delay, anatomical developmental defects, and neurobehavioral abnormalities. Reduction-of-function mutations of the Arabidopsis thaliana Csn3 gene decreased the COP9 complex level and caused defects in diverse aspects of plant development [9]. Also, Csn3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast [5]. These results indicate that Csn3 plays an important role in mammalian development. In addition, amplification and overexpression of Csn3 in osteosarcomas potentially target TP53 for proteasome-mediated degradation and break down the anti-tumor pathway [10]. RNAi-mediated Csn3 gene silencing inhibits metastasis of osteogenic sarcoma cells [11]. However, the correlation between Csn3 and other tumors has not been studied yet.

Here, we report that lentivirus-mediated knockdown of Csn3 expression in SMMC-7721 and Hep3B HCC cell lines significantly inhibits the proliferative ability of the tumor cells, which may be caused by the cell cycle arrest at G0/G1 phase and an enhanced apoptosis. Molecular analysis shows that knockdown of Csn3 expression leads to the upregulation and accumulation of pro-apoptotic molecules BIK and Caspase-8. Finally, knockdown of Csn3 expression evidently suppresses tumor growth in a xenograft nude mice model. Taken together, these data demonstrate Csn3 as an important regulator of cell cycle and cell survival mediating the proliferation of HCC cells and highlight that targeting Csn3 or COP9 signalosome might be a promising strategy for anti-HCC therapy.

Materials and methods

Cell lines and patient samples

HEK293T, SMMC-7721, and Hep3B cells were purchased from Shanghai Institute of Biochemistry and Cell biology. The cell lines were routinely maintained in DMEM supplemented with 10% FBS at 37°C in a humidified incubator with a constant air flow of 5% CO₂ and 95% O₂.

Surgically removed liver specimens from a total of 30 HCC patients were used in this study. They were diagnosed as primary liver cancer by clinical, imaging, and pathological examinations. For pathological diagnosis, the surgically removed liver tissues were hematoxylin–eosin (HE) stained and analyzed by pathologists as hepatocellular carcinoma. For comparison, another 30 cases of cirrhosis and 30 cases of normal liver tissues were set as controls.

Specimens were routinely fixed in 10% buffered formalin and embedded in paraffin. The samples were incubated with the Anti-Csn3 (Abcam, Cat #: ab10463) antibody and goat antirabbit secondary antibody (Abcam, Cat #: ab6721) and visualized by the EnVision method (DAKO; Hamburg, Germany) according to the manufacturer's instructions. Results were analyzed according to the intensity of the brown staining and the percentage of the immune-positive cells to total cancer cells. Ten high-magnification fields were randomly chosen and interpreted by three pathologists using double-blind method. Each slice was scored according to the staining intensity of the positive cells and the percentage of positive cells to total cancer cells. In each slice, light yellow, brownish-yellow, and darkbrown were scored as 0, 1, 2, and 3; and the positivity of 0, <1/3, 1/3-2/3, and >2/3 were scored as 0, 1, 2, and 3. The two scores were combined and the total score of 0 was defined as negative, and 1-6 as positive.

Lentivirus packaging and transduction of HCC cells

The shRNA sequences targeting Csn3 were inserted into the lentiviral vector pLVTHM and purified with the Qiagen plasmid purification kit. The transfection was carried out using MISSION Lentiviral Packaging Mix kit according to the manufacturer's instruction. Briefly, shRNA containing pLVTHM vector was mixed with 20 μ l Packing Mix (PVM),and 12 μ l PEI in 400 μ l serum-free DMEM medium. After 15 min of incubation at RT, the transfection mixture was added into HEK293T cell at a confluency of 70–80%. After 48 h of incubation, the cell culture medium was collected, and the lentiviral particles were concentrated with the Centricon Plus-20 Centrifugal Filter Device.

SMMC-7721 and Hep3B cells were seeded onto the 6-well plates at a concentration of 5×10^4 /well and transduced with lentivirus at MOI of 20 and 10 for SMMC-7721 and Hep3B cells, respectively. The knockdown efficiency was validated with real-time PCR at day 3 post-transduction and with Western blot at day 4. After confirming the knockdown efficiency, the cells were seeded onto the 96-well plates for MTT assay, and onto the 6-well plates for colony formation assay, and apoptotic and cell cycle analysis.

Analysis of tumorigenicity

The tumorigenesis ability of HCC cells was analyzed in BALB/c nude mice (No. 20, female, 4–6 weeks old, 20 ± 2 g, purchased from Shanghai SLAC laboratory Animal Co., Ltd.). Lentivirus-transduced SMMC-7721 cells of more than 80% transduction efficiency were resuspended in serum-free DMEM medium to a concentration of 2×10^7 /ml. Mice were randomized into two groups

(10 mice in each group): LV-con group and LV-shCsn3 group, and 0.25 ml cell suspension (5 \times 10⁶ cells/mouse) was subcutaneously injected into the right rear flank of the mice. Tumor size was recorded every other day with a precision caliper as the maximum diameter (a, mm) and vertical short diameter (b, mm). The tumor volume was calculated using the formula $V \text{ (mm}^3) = 1/2ab^2$. After 27 days of observation, mice were killed and the xenograft tumors were dissociated, weighed, and photographed.

Statistical analysis

All statistical calculations were carried out with the Prism software. The χ^2 test or Fisher's exact test were used to compare qualitative variables, while continuous variables were compared using Student's t test or Mann–Whitney test for variables with an abnormal distribution. Receiver operating characteristic curve analysis was used to determine the optimal cutoffs of continuous variables. P < 0.05 was considered statistically significant.

Results

Upregulation of Csn3 in hepatocellular carcinoma tissues

Csn3 expression was detected in normal liver and HCC tissues, including 30 normal liver tissue samples, 30 cirrhosis samples, and 30 HCC samples. As shown in Table 1, 7 nor-

Table 1 Expression pattern of Csn3 in HCC, cirrhosis, and normal liver tissues revealed in immunohistochemistry analysis

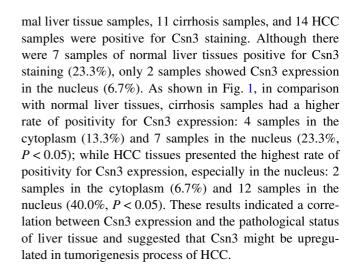

Type of tissues	Case	Csn3 negative	Csn3 positive		P value
			Nucleus	Cytoplasm	
HCC	30	16 (53.3%)	12 (40.0%)	2 (6.7%)	0.046
Cirrhosis	30	19 (63.3%)	7 (23.3%)	4 (13.3%)	
Normal	30	23 (76.7%)	2 (6.7%)	5 (16.7%)	

Fig. 1 Expression of Csn3 protein in liver tissues. Expression of Csn3 was localized in the nucleus and cytoplasms of the hepatocytes, and the pattern was different among the HCC (a, e), cirrhosis (d-f), and normal liver

tissue (a-c). The magnification

is ×400

proliferation in HCC cells The transduction efficiencies is of around 80% in SMMC-7721 and Hep3B cells transduced with LV-con or LV-shCsn3 as checked according to GFP expression (Fig. 2a). LV-shCsn3 effectively knocked down Csn3 expressions at the mRNA and protein levels as confirmed by the qPCR method (Fig. 2b, P < 0.05) and Western blot analysis (Fig. 2c), respectively. After confirming the knockdown efficacy of LV-shCsn3 transduction, HCC cells were examined for their growth rate by MTT method. As shown in Fig. 3a, b, LV-shCsn3 significantly reduced the growth rate of SMMC-7721 and Hep3B cells (P < 0.05). To further study the anti-proliferative effect of LV-shCsn3, lentivirus-transduced cells were seeded onto the 6-well plates and cultured for 10 days. The colony formation was observed under microscope and photographed (Fig. 3c, d, upper panel). LV-shCsn3 drastically inhibited the colony formation of SMMC-7721 and Hep3B cells (Fig. 3c, d, lower panel, P < 0.05). These results implied that Csn3 is an important protein regulating cell proliferation in HCC cells.

Knockdown of Csn3 expression inhibits cell

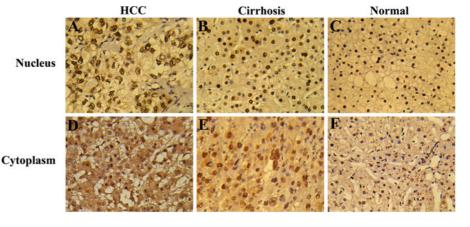
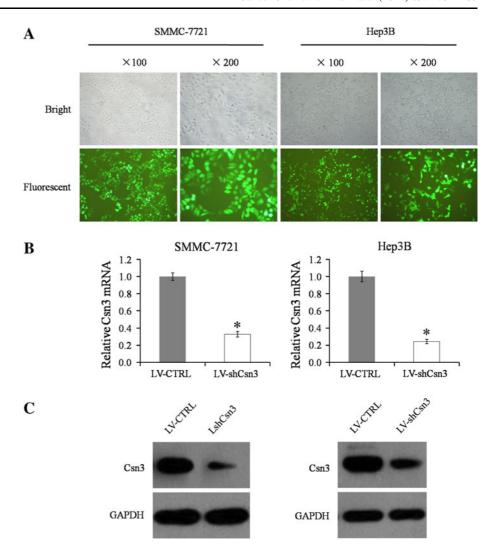
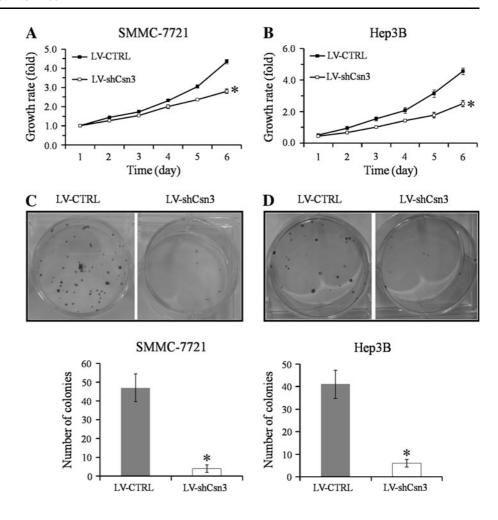



Fig. 2 Lentivirus-mediated knockdown of Csn3 in hepatocytes. a Efficient transduction of LV-shCsn3 in HCC hepatocellular carcinoma cells. HCC cells were transduced with lentivirus LV-Control or LV-shCsn3. The MOIs for SMMC-7721 and Hep3B were 20 and 10, respectively. **b** LV-shCsn3 knockdown Csn3 mRNA expression in SMMC-7721 and Hep3B cells (*P < 0.05). c LV-shCsn3 knockdown Csn3 protein level in SMMC-7721 and Hep3B cells. Lentivirus-transduced cells were lysed and subjected to Western blot analysis of protein expression with anti-Csn3 and GAPDH antibodies (*P < 0.05)

Knockdown of Csn3 expression leads to G0/G1 arrest in HCC cells


In order to study the mechanism how LV-Csn3 inhibited cell growth, the lentivirus-transduced cells were stained with PI and analyzed by the flow cytometry. LV-shCsn3 induced cell cycle arrest at G0/G1 phase and reduced the cell population in S phase and G2/M phase (Fig. 4a, b, P < 0.05), which indicated that Csn3 might be a cell cycle regulator maintaining the normal cell cycle progression. In addition, as analyzed by the BrdU incorporation assay, LV-shCsn3 dramatically inhibited the DNA synthesis activity in SMMC-7721 and Hep3B cells (Fig. 4c, d, P < 0.05). These results suggested that knockdown of Csn3 expression might reduce DNA synthesis, inhibit cell division, and put cells into the quiescent stage (G0/G1).

Knockdown of Csn3 expression induces apoptosis in HCC cells

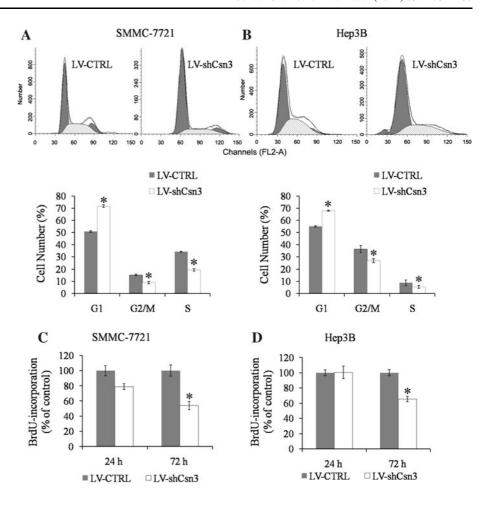
Except for the cell cycle modification, an increase in cell population in the sub-G1 phase could also be found in LV-shCsn3-transduced Hep3B cells, implying that Csn3 might be involved in the apoptosis of liver cells. Therefore, the apoptotic rate of lentivirus-transduced HCC cells was examined by flow cytometry with Annexin V and 7-AAD staining. As shown in Fig. 5a, b, LV-shCsn3 transduction potently induced apoptosis in both SMMC-7721 and Hep3B cells (P < 0.05). To further investigate the underlying molecular mechanism, a series of apoptosis-associated proteins were detected with Western blot analysis. In accordance with the flow cytometry result, the cleavage of PARP, the DNA repair enzyme, and a marker of cell apoptosis were significantly enhanced

Fig. 3 LV-shCsn3 suppresses the proliferations of HCC cell lines. a, b LV-shCsn3 inhibited cell growth rates of HCC cells. SMMC-7721 and Hep3B cells were transduced with LV-con and LV-shCsn3, seeded onto the 96-well plates, and measured with MTT method. The result showed that knockdown Csn3 expression with LV-shCsn3 significantly inhibited the cell growth rate of HCC cell lines. c, d LV-shCsn3 suppressed the colony formation ability of SMMC-7721 and Hep3B cells. Cells were seeded onto the 6-well plates at a concentration of 2,000 cells/well in triplicates. After cultured for 10 days, the cells were stained with Giemsa solution and visualized. The number of colonies were calculated and statistically analyzed (*P < 0.05)

(Fig. 5c). Meanwhile, LV-shCsn3 obviously increased the protein levels of BIK and Caspase-8, indicating the activations of the mitochondrial and death receptor pathways.

Knockdown of Csn3 expression inhibits tumor growth in nude mice

As LV-shCsn3 significantly suppressed cell cycle progression and potently induced apoptosis in HCC cells, we investigated whether it has an impact on the tumorigenesis of HCC cells in nude mice. LV-CTRL- or LV-shCsn3-transduced SMMC-7721 cells were subcutaneously injected into the nude mice. The mice injected with LV-CTRL-transduced SMMC-7721 cells produced large tumors, whereas the mice injected with LV-shCsn3-transduced SMMC-7721 cells showed a remarkable reduction in tumor size (Fig. 6a, P < 0.05). Injection of LV-shCsn3-transduced SMMC-7721 cells demonstrated 59.6% reduction in tumor weight compared to that of LV-CTRL-transduced cells (Fig. 6b, P < 0.05).


Discussion

In this report, we show that lentivirus-mediated knockdown of Csn3 expression in SMMC-7721 and Hep3B cells dramatically represses the proliferation of tumor cells. Colony formation assay shows that knockdown of Csn3 expression significantly reduces tumor growth in vitro. Subcutaneous injection of lentivirus-transduced tumor cells in nude mice demonstrates that knockdown of Csn3 expression inhibit tumor growth in vivo. Cell cycle analysis shows that knockdown of Csn3 expression evidently induces cell cycle arrest in G0/G1 phase and reduces the cell numbers in S phase and G2/M phase. Moreover, knockdown of Csn3 expression induced apoptosis, which may be associated with an upregulation of BIK and Caspase-8 expression in SMMC-7721 cells. The data here suggest Csn3 as an oncogene, maintaining the survival and proliferation of HCC cells.

Regulation of subcellular localization, such as cytoplasma-nuclear shuttling, of signaling proteins is a key strategy for mammalian cells to regulate the intracellular signal

Fig. 4 LV-shCsn3 induces cell cycle arrest at G0/G1 phase. a LV-shCsn3-induced G0/G1 phase arrest in SMMC-7721 cells. b LV-shCsn3-induced G0/ G1 phase arrest in Hep3B cells. Lentivirus-transduced SMMC-7721 and Hep3B cells were stained with PI solution and analyzed using the flow cytometer (*P < 0.05). **c**, **d** LV-shCsn3 inhibited SMMC-7721 and Hep3B cell growth by decreasing DNA synthesis. Lentivirustransduced cells were analyzed with BrdU cell proliferation ELISA as indicated in the "Materials and methods" (*P < 0.05)

transduction and gene expression. Nuclear translocation of steroid receptors, including estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR), is triggered by ligand binding and initiate the transcription of downstream target genes [12]. The rapid regulations and activations of such proteins are normally mediated through the post-translational modifications, for example, phosphorylation, ubiquitination, acetylation, sumoylation, etc. [13]. CSN regulates the nucleocytoplasmic partitioning of COP1, an E3 ligase, between cytoplasm and nucleus in response to light stimuli [14]. It has been reported that CSN is localized in the nucleus and serves as a platform for protein ubiquitination in Arabidopsis [15-18]. However, the subcellular localization of different CSN subunits and how CSN is assembled in mammalian tissues are poorly understood. In the present study, immunohistochemical staining shows that Csn3 can localize either in the cytoplasm or in the nucleus in the liver tissues (Fig. 1). A comparison between normal liver tissues, cirrhosis, and HCC tissues reveals that Csn3 expression level and subcellular localization pattern are correlated with the malignant status of the liver tissues (Table 1). More HCC samples are positive for Csn3 staining compared with cirrhosis samples and normal liver samples. As for the subcellular localization patterns of Csn3 is concerned, significantly more HCC samples show a nuclear localization of Csn3, whereas only few normal liver samples have nuclear localization. The results imply that Csn3 can shuttle between the cytoplasm and nucleus, and the nuclear localization is related to the tumorigenesis process in HCC. The nuclear localization of Csn3 may be vital for the assembly of CSN in liver tissues.

Mutation of different CSN subunits may disrupt the entire complex in plants [19], and CSN stability is decreased in CSN3^{-/-} mice [5], suggesting Csn3 as an important component maintaining the integrity of CSN. In this study, we use lentivirus to knockdown Csn3 expression in SMMC-7721 and Hep3B cells, which may also break down the CSN complex in HCC cells. Csn3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast [5]. The present study demonstrates that knockdown of Csn3 expression prominently suppresses the proliferation of HCC cells and inhibits the tumor growth in the nude mouse model. These results highlight the potential of Csn3 as an oncogene supporting tumor growth of HCC.

Two major biochemical functions have been reported for the CSN. One is the protein kinase function, and the other is E3 ubiquitin ligase deneddylase, through which CSN maintains the stability of a wide variety of proteins, including

Fig. 5 LV-shCsn3 induces apoptosis through upregulating BIK and Caspase-8 expressions in HCC cell lines. a LV-shCsn3induced cell apoptosis in SMMC-7721 cells (*P < 0.05). **b** LV-shCsn3-induced cell apoptosis in Hep3B cells (*p < 0.05). c LV-shCsn3 upregulated BIK and Caspase-8 expression and induced PARP cleavage in SMMC-7721 cells. Lentivirus-transduced cells were subjected to Western blot analysis with anti-BIK, anti-Caspase-8, anti-PARP, and anti-GAPDH antibodies

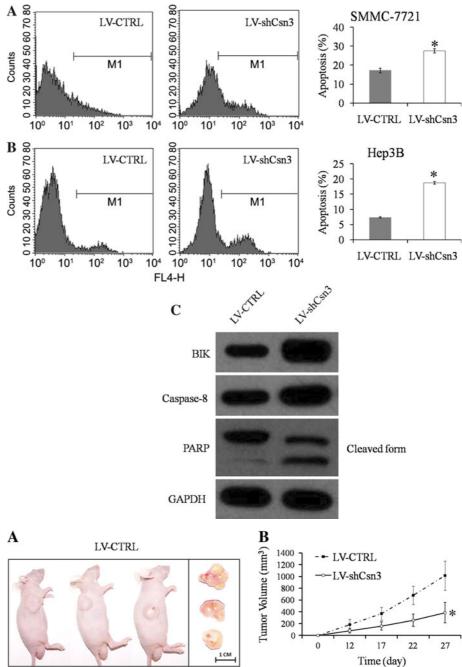
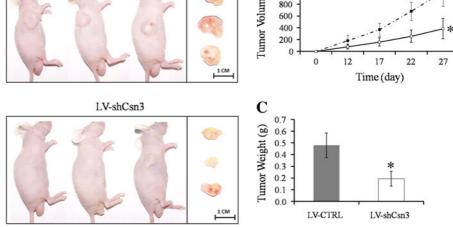



Fig. 6 LV-shCsn3 inhibits HCC growth in nude mice. a Tumor growth curve in nude mice. LV-con- and LV-shCsn3transduced cells were s.c. injected into the right rear flank of nude mice. Tumor volume was calculated every other day after s.c. injection of SMMC-7721 cells as indicated in the "Materials and methods." b Twenty-seven days after injection, the mice were killed and the tumors were dissociated. The dissociated tumors were weighed and statistically analyzed (*P < 0.05)

those involved in the cell signaling pathway, such as c-Jun, and those in cell cycle control and apoptosis, such as p53 and p27^{kip1}. Therefore, CSN subunits are important regula-

tors of cell cycle progression. CSN8-deficient T cells showed defective entry into the cell cycle from the G0 quiescent state. This phenotype was associated with a lack

of signal-induced expression of cell cycle-related genes, including G1 cyclins and cyclin-dependent kinases, and with excessive induction of p21 (Cip1) [20]. This finding is in consistent with our observation that knockdown of Csn3 expression in HCC cells arrests the cell cycle at G0/G1 phase and dramatically reduces the population of replicating cells (during the S phase of the cell cycle). These results indicate that the presences of CSN subunits are vital for cell cycle progression, underscoring the importance of CSN complex in cell proliferation and tumorigenesis.

Cell cycle progression and apoptosis are two closely connected processes in eukaryocytes, which develop a mechanism called checkpoints to quality control the normal cell division. In addition to cell cycle control, CSN complex also functions in the cell apoptotic pathway, due to its ability to regulate the tumor suppressor p53. Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death [21]. Csn6 plays an important role in regulating DNA damage-associated apoptosis and tumorigenesis through control of the MDM2-p53 signaling pathway [22]. In the present study, we found that targeted knockdown of Csn3 expression in HCC cells significantly upregulates pro-apoptotic proteins BIK and Caspase-8, and induces apoptotic cell death. Accordingly, CNS family subunits are important cell survival regulator, which may function through influencing the formation of CSN complex.

Conclusions

In summary, this study demonstrates that targeted knockdown of Csn3, a CSN subunit, suppresses cell cycle progression, induces apoptosis, and inhibits the proliferation of HCC cells. The results suggest that Csn3 plays an important role in the tumorigenesis process of HCC and that Csn3 might be a target for anti-HCC therapy.

Conflict of interest The authors have no conflict of interest.

References

- Rahbari NN, Mehrabi A, Mollberg NM, Muller SA, Koch M, Buchler MW, Weitz J (2011) Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg 253(3): 453–469. doi:10.1097/SLA.0b013e31820d944f
- Lin CL, Kao JH (2011) The clinical implications of hepatitis B virus genotype: recent advances. J Gastroenterol Hepatol 26 (Suppl 1):123–130. doi:10.1111/j.1440-1746.2010.06541.x
- Livraghi T, Makisalo H, Line PD (2011) Treatment options in hepatocellular carcinoma today. Scand J Surg 100(1):22–29
- Spangenberg HC, Thimme R, Blum HE (2009) Targeted therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 6(7):423–432. doi:10.1038/nrgastro.2009.86

- Yan J, Walz K, Nakamura H, Carattini-Rivera S, Zhao Q, Vogel H, Wei N, Justice MJ, Bradley A, Lupski JR (2003) COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast. Mol Cell Biol 23(19):6798–6808
- Hannss R, Dubiel W (2011) COP9 signalosome function in the DDR. FEBS Lett. doi:10.1016/j.febslet.2011.04.027
- Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M, Deng XW (1998) The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8(16):919–922
- Bech-Otschir D, Seeger M, Dubiel W (2002) The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J Cell Sci 115(Pt 3):467–473
- Peng Z, Serino G, Deng XW (2001) A role of *Arabidopsis* COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development 128(21):4277– 4288
- Henriksen J, Aagesen TH, Maelandsmo GM, Lothe RA, Myklebost O, Forus A (2003) Amplification and overexpression of COPS3 in osteosarcomas potentially target TP53 for proteasomemediated degradation. Oncogene 22(34):5358–5361. doi:10.1038/ si.onc.1206671
- Yan T, Tang G, Ren T, Shen D, Sun K, Liang W, Guo W (2011) RNAi-mediated COPS3 gene silencing inhibits metastasis of osteogenic sarcoma cells. Cancer Gene Ther. doi:10.1038/cgt.2011.16
- Carlberg C, Seuter S (2010) Dynamics of nuclear receptor target gene regulation. Chromosoma 119(5):479–484. doi:10.1007/ s00412-010-0283-8
- Tootle TL, Rebay I (2005) Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 27(3):285–298. doi:10.1002/bies.20198
- 14. Osterlund MT, Ang LH, Deng XW (1999) The role of COP1 in repression of *Arabidopsis* photomorphogenic development. Trends Cell Biol 9(3):113–118
- 15. Wei N, Chamovitz DA, Deng XW (1994) *Arabidopsis* COP9 is a component of a novel signaling complex mediating light control of development. Cell 78(1):117–124
- Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286. doi:10.1146/annurev.cellbio.19. 111301. 112449
- Gusmaroli G, Figueroa P, Serino G, Deng XW (2007) Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with *Arabidopsis* Cullin3-based E3 ligases. Plant Cell 19(2):564–581. doi:10.1105/tpc.106.047571
- Staub JM, Wei N, Deng XW (1996) Evidence for FUS6 as a component of the nuclear-localized COP9 complex in *Arabidopsis*. Plant Cell 8(11):2047–2056. doi:10.1105/tpc.8.11.2047
- Wei N, Deng XW (1999) Making sense of the COP9 signalosome.
 A regulatory protein complex conserved from *Arabidopsis* to human. Trends Genet 15(3):98–103
- Menon S, Chi H, Zhang H, Deng XW, Flavell RA, Wei N (2007) COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat Immunol 8(11):1236–1245. doi:10.1038/ ni1514
- 21. Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192(2):209–218. doi:10.1083/jcb.201009059
- 22. Zhao R, Yeung SC, Chen J, Iwakuma T, Su CH, Chen B, Qu C, Zhang F, Chen YT, Lin YL, Lee DF, Jin F, Zhu R, Shaikenov T, Sarbassov D, Sahin A, Wang H, Lai CC, Tsai FJ, Lozano G, Lee MH (2011) Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest 121(3):851–865. doi:10.1172/JCI44111

